|U
(=)
~J
N
(= -]

NASA TECHNICAL NOTE

LOAN COPY: RETUF
AFWL (DOUL)
KIRTLAND AFB,

LhhEETO

l!ﬂfl!!lﬂﬂ!l@ﬂjlvﬂlllllllllllNIIIH

NASA TN D-6728

DECAY OF HOMOGENEOUS TURBULENCE
FROM A SPECIFIED STATE

by Robert G. Deissler

Lewis Research Center

Cleveland, Obio 44135 £
\(? B¥ Werpihd [
O":’ Lelsorntald ‘{{(‘

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION -



. Report No. 2. Government Accession No.

TECH LIBRARY KAFB, NM

.

1
NASA TN D-6728

4. Title and Subtitle 5. Report Date
DECAY OF HOMOGENEOUS TURBULENCE FROM A March 1972
SPECIFIED STATE 6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.
Robert G. Deissler E-5761

10. Work Unit No.

9. Performing Organization Name and Address 136-13
Lewis Research Center 11. Contract or Grant No.
National Aeronautics and Space Administration
Cleveland, Ohio 44135 . 13. Type of R;port and Period Covered

12, Sponsoring Agency Name and Address Technical Note
National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C. 20546

15. Supplementary Notes

16. Abstract -
The homogeneous turbulence problem is formulated by first specifying the multipoint velocity
correlations or their spectral equivalents at an initial time. Those quantities, together with
the correlation or spectral equations, are then used to calculate initial time derivatives of
correlations or spectra. The derivatives in turn are used in time series to calculate the
evolution of turbulence quantities with time. When the problem is treated in this way, the
correlation equations are closed by the initial specification of the turbulence and no closure
assumption is necessary. An exponential series which is an iterative solution of the Navier-
Stokes equations gave much better results than a Taylor power series when used with the
limited available initial data. In general, the agreement between theory and experiment was
good.

17. Key Words {Suggested by Author(s}) 18. Distribution Staieng
Turbulence decay Turbulence Unclassified - unlimited
Specified initial conditions Fluid mechanics
Homogeneous turbulence

18, Security Classif, (of this re-port) 20. Security éla;sif. (of this page) 21. No. of Pages 22, Price®

Unclassified Unclassified 29 $3.00

* For sale by the National Technical Information Service, Springfield, Virginia 22151



DECAY OF HOMOGENEOUS TURBULENCE FROM A SPECIFIED STATE
by Robert G. Deissler

Lewis Research Center

SUMMARY

The homogeneous turbulence problem is formulated by first specifying the multi-
point velocity correlations or their spectral equivalents at an initial time. Those quan-
tities, together with the correlation or spectral equations, are then used to calculate
initial time derivatives of correlations or spectra. The derivatives in turn are used in
time series to calculate the evolution of turbulence quantities with time. When the prob-
lem is treated in this way, the correlation equations are closed by the initial specifica-
tion of the turbulence and no closure assumption is necessary. An exponential series
which is an iterative solution of the Navier-Stokes equations gave much better resuits
than a Taylor power series when used with the limited available initial data. In general,
the agreement between theory and experiment was good.

INTRODUCTION

A basic difficulty in the usual analyses of homogeneous turbulence is the closure
problem; that is, the set of correlation or moment equations contains more unknowns
than equations. The problem occurs, of course, because of the nonlinearity of the
Navier-Stokes equations from which the correlation equations are obtained (ref. 1).

Although many approximations have been introduced into the correlation equations
(or equivalent spectral equations) in attempts to obtain closure, those suggestions have
varying degrees of arbitrariness. The analyses in references 2 and 3, although based
on definite physical ideas, contain dimensionless constants which must be determined by
experiment. Those in references 4 to 7, although somewhat more deductive, have other
difficulties. That in reference 4, at least for the restricted initial condition for which it
has been worked out, sometimes gives negative energies (ref. 8). The analyses in ref-
erences 5 and 6 give reasonable results for moderately weak turbulence but become un-
duly complex for high Reynolds numbers. That in reference 7, although it has yielded
some realistic deductions, also has computational difficulties because of its complexity.



There is another way of looking at the problem of homogeneous turbulence. In order
not to lose sight of our goal, we will first give a statement of that problem. The state-
ment given by Batchelor is essentially the following: given the statistical state of a
homogeneous turbulent field at an initial instant, the problem is to predict the evolution
of the turbulence (in probability) as a function of time. Note that the initial development
of turbulence from a nonturbulent state produced by, say, flow through a grid, is not
considered in this report. Rather we are concerned with the evolution of turbulence
after a time when the flow is already turbulent. In order to specify completely a turbu-
lent field at an initial time, it is necessary to give all of the multipoint velocity correla-
tions or their spectral equivalents at that time (ref. 1). It is not hard to show that,
given these multipoint correlations and the correlation equations, all the time deriva-
tives of the turbulent energy tensor and of other pertinent turbulence quantities can be
calculated. These time derivatives can then be used in a series, for instance a Taylor
series, to calculate the evolution of the turbulent energy tensor (or of the equivalent
energy spectrum tensor) and of other turbulence quantities.

It is noted that when the turbulence is treated in this way, we no longer have the
problem of closing the infinite set of correlation or spectral equations. The correlation
equations are used only to relate the correlations at an initial time to their time deriva-
tives, and those correlations must be given in order to have a complete specification of
the turbulence at that time. Of course, in practice only a small number of the correla-
tions, and thus of their time derivatives, will ordinarily be available, but a sufficient
number may be known to give a reasonably good representation. It might be pointed out
that even in those analyses which require a closure assumption, the turbulence should
be specified initially by its correlations or spectra since the correlation equations re-
quire initial conditions.

Kraichnan (ref. 9) has very recently studied the convergence properties of series
such as those considered in this report. As mentioned in another article by that author
(ref. 10), it is not necessary that an expansion be convergent in order to be useful,
since divergent series can provide excellent asymptotic approximations (ref. 11).

Although the present problem circumvents the closure problem in the usual sense,
there is still the question of the legitimate truncation of the time series to obtain expli-
cit results. This report is not concerned primarily with convergence questions but will
use as a test the agreement of the results with experiment. Although a Taylor series
might give good results if sufficient statistical information were available at the initial
time, it will be seen that an exponential series which arises in a study of the nonlinear
decay of a disturbance in a fluid (ref. 12) is much more satisfactory. This is not sur-
prising since the exponential series is an iterative solution of the Navier-Stokes equa-
tions and thus contains information which is not contained in the Taylor series. The re-
sulting formulation gives results which are in quite good agreement with the available

experimental data.
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INITIAL TIME DERIVATIVES AND SIMPLE EXPANSIONS

As mentioned in the INTRODUCTION, if the multipoint correlations are known at an
initial instant, as they must be for a complete specification of the turbulence at that
instant, then the time derivatives of the correlations can be calculated from the correla-
tion equations. For illustrative purposes we will consider the derivatives of the turbu-
lent energy tensor @, where u, and u! are respectively velocity components at the
points P and P' separated by the vector T, and the overbar indicates an averaged
value. Then the first time derivative of F at t = ’c1 is given directly by the two-
point correlation equations (ref. 5) evaluated at t = tlz
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where the pressure-velocity correlations are given by
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and a similar equation for (uip') . The pertinent solution of equation (2) is (ref. 1)
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where u!' is the velocity at the point X'' = X' - §, and the integration is over all §
space. This solution is for an infinite fluid, for which case the boundary conditions are
that p—uJ' is bounded for T =0 and zero for T = <. The quantity p is the density,



y is the kinematic viscosity, and p is the pressure. A repeated subscript in a term
indicates a summation, with the subscript successively taking on the values 1, 2, and 3.
The correlation equations are, of course, derived from the Navier-Stokes equations.
The quantity EIT]' / ot at t=t; canbe calculated from equations (1) and (2) if ?u:;
and the two-point triple correlations are known at t = tl.

The second time derivative of uiu-' is obtained by differentiating the two-point cor-

relation equations and evaluating the result at tl. This gives
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The quantity [(a/ at)( uiuj'ul'{)] in equation (3) is obtained from the three-point correla-
t=t
1
tion equations (ref. 5) written for t =t; and r' =T. (The vector T' separates the
points P and P'.) Thus,
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where ( pu]!ul'{'),c_,c is given by
1
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Similar equations are obtained for the other pressure-velocity correlations. The bound-
ary conditions for equation (8) are similar to those for equation (2); that is, puj'ul'(' is
bounded for ¥ or r' =0 and zerofor T or r'=e. Also, an expression for

[(a/ at)<uiu]?uk>i| in equation (3) is obtained by letting r' = 0 instead of ' =7¢ in
t=t
1

can be

equation (5). Thus, if the turbulence is specified sufficiently well at t = tl that the
double, triple, and quadruple velocity correlations are known, (azuiuj‘/atz)
t

=t

1
calculated. Similarly, higher order derivatives are obtained by considering four or
more point correlations in the turbulent field (ref. 6). With the time derivatives of

uiuj‘ known at t = tl, a Taylor series gives uiuj‘ as a function of time as
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A similar analysis can be carried out in wave number space. For instance, the
energy spectrum function E, which shows the contributions at various wave numbers to
uiuj' /2, can be written as
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where 3E/dt is obtained from the Fourier transform of the two-point correlation equa-
tion (eq. (9) of ref. 5) as

oE (k) 1 2 . :|
ot /A‘ E {" 2vk <Pﬁ(m + lKk I}Oiki(m - Qﬂiki(-f_f) dA(x) (9)
where dA is an element of surface area of a sphere of radius «, ¥k is the wave number
vector corresponding to the spatial vector r, and Pii and Pixi are respectively the
Fourier transforms of uiui' and uiukui'. Extracting from the integral that portion which
can be written in terms of E and setting the rest of the integral equal to T give

9 _ 1 9ulE (10)
ot

Equation (10) is the well known scalar form of the two-point spectral equation. The
transfer term T produces energy transfer between wave numbers and arises from the
triple correlation term in equation (1) (with i =j (ref. 1)). (Note that the pressure-
velocity correlation terms in eq. (1) drop out for i =j.) The second time derivative of
E is
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The quantity (3T/ct), ., can be calculated from the two- and three-point spectral equa~
t_tl q

tions if the two- and three-point spectral quantities in those equations are known at

t =t,. From equations (20), (23), and (24) of reference 5 we obtain
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where K' is the wave number vector corresponding to r', dx = dic; dkgy drg, and Bijk
and ﬁljkl are respectively the Fourier transforms of m and W If by
analogy with the procedure used for obtaining equation (10), we extract from the integral
that portion which can be written in terms of spectral quantities already defined (E and

T), we have
2 -
T | 2pT - —; f(Bijk’ Bijkl) dx' dA (k)
o0

= V[Bijk(’?')’ Bijkl (K»' ] (11)

where V is a quantity related to the three-point spectral tensors ,8 ik and 'Bljkl More
precisely we can say that V is a functional of Ble and Bl]kl’ smce each value of V
depends on values of B ik and ‘Bljkl at all points of k' space. With equation (11), the

expression for (2 E/at )t—t becomes
-1

2
0 _
- = Vit

2 2\2
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The Taylor series for E then becomes

2
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2! 1 1

Equation (13) was used in conjunction with available experimental data at an initial time
(ref. 13) in an attempt to calculate the variation with time of E and thus of u,u;.  How-

ever, with the available initial data Et—t s Tt—t , and Vt—t ), reasonable results were
1 1 1
not obtained except at small times (fig. 2). It thus appears that, in order to obtain good



results by using a simple Taylor series, initial statistical information of much higher
order than that which is available would have to be given. Thus, an alternative approach
which makes more efficient use of the initial statistical information and also incorpor-
ates additional information from the equations of motion will be considered.

A WORKABLE FORMULATION FOR THE DEVELOPMENT OF
TURBULENCE FROM A GIVEN INITIAL STATE

In order to obtain a more efficient means for calculating the evolution of turbulence
than by a Taylor series in time, we consider an iterative solution of the Navier-Stokes
equations similar to that in reference 12. In addition to the initial statistical informa-
tion and calculated time derivatives, we will then have information about the form of the
decay law from the equations of motion.

Although attention was confined to determinate initial conditions in reference 12,
for the present purposes we can just as well assume the initial velocity fluctuations to
be random or turbulent. Thus, we consider a field of homogeneous turbulence to be
made up of a very high density of eddies or harmonic disturbances in wave number space.
For all practical purposes then, since the density of disturbances is very high, the spec-
trum of the turbulence can be considered continuous. The velocity and pressure at any
point in the field are given by

2
ou, 9%, o(u.w,)
A, 1 __ 19 ik (14)
ot axk axk p axi axk
and
2
2
1 % 2 (ukul) (15)

P axk axk axk ox )

The latter equation is obtained by taking the divergence of equation (14) and applying the

continuity equation.
From the spectrum of harmonic disturbances we arbitrarily select two cosine terms

with wave number vectors q and r. Then, the velocity associated with those distur-

bances will be

uicc=aicosc-1’-§+bicos1_"-i’ (16)



where the superscript cc on the velocity indicates that it depends on two cosine terms.
The results that follow would be the same if two sine terms or a sine and a cosine term
were considered. If ufc is substituted for u; in the right sides of equations (14) and
(15), the time variations of a; and bi plus additional harmonic terms are obtained.

If we then substitute that new expression into equations (14) and (15), another expression
containing still more harmonic terms is obtained. In each approximation, the linear
terms of the Navier-Stokes equations are considered as unknown and the nonlinear terms
as known from the preceding approximation. As shown in reference 12, continuation of
this process leads to

ufc :Z (Ai ~ cos K- X+ Ais"Esin K - }?) (17)
K
where
c' c c
AL T= 2o 1 q o[ B gt ) (18)
q
and
s' s _ _ K -
Ai, == Z al ¥y exp[ bK’r(t tl)] (19)
T

Comparison of equations (17) to (19) with the first and second approximations in
reference 12 shows that b%, 1= bz——, 17 Z/Kz. Also, we note that since the two harmonic
components in equation (16) were selected arbitratily, expressions similar to equations
(17) to (19) will be obtained for any other two components. But the nonlinear interaction
of any number of harmonic components can be expressed as the sum of the interactions
of pairs of components (eqs. (37) and (38) of ref. 12). Thus, u;, the velocity resulting
from all the harmonic components, will be of the form of equations (17) to (19) and can
be written as



where

A(i’)K-. - angc’, . exp[— vt - ty)] +Z a(i),’-c—’q exp[— b% ot tl)] (21)
q
g#l

The summations in equations (20) and (21) will, of course, contain more terms by many
orders of magnitude than those in equations (17) to (19). Since the initial conditions are

random, the quantities (.) - a(-') - ., and b= _ are assumed to be random variables.
1? K 13 K’ q K’ q

The space-averaged value of ui’2 (no sum on i) is obtained from equation (20) by squar-
ing, integrating over a cycle, and using the orthogonality property of sines and cosines.

This gives
— 2 2
2 _ 1 C s
uj = E 5[(Ai, z) (Ai,:?)] (22)
K
where
2 2 2
0 0 2 § 0O 0
[Ai,f?:l = [ai,ﬁ, 1] exp [— 2vk“(t - tl)] + [ai,ﬁ,q] exp[— 2bK—-’ q(t - tl)]
]
g#l

According to equation (23), <Aic, ,—{)2 and (Ai 75)2 in equation (22) have the same form,
so that we do not need to carry along the superscripts ¢ and s.

We want to obtain an averaged form of equation (23) which is a smoothed function of
the magnitude of the vector K (but not of its direction). In order to do that, we divide

the interval of k = (KiKi)l/z over which disturbances occur into a large number of small

increments Ak. The terms in Z in equations (22) and (23) are divided into groups each
K
of which corresponds to a particular Ak. Note that, while the magnitudes of the various

vectors lying in a particular Ak are approximately equal, their directions can, of
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course, vary. The group of terms corresponding to each Ak is then subdivided into

groups in each of which the values of the bi %, q in Z do not vary appreciably from

b b q
g#1
a value of bS(K). The index s designates a particular increment in the values of the
bi % q Also, for each s, a‘i‘z %, q will have an average value which we designate by
> b 2 b

< ??> . The summation Z in equation (23), which applies to a particular &, is then
s

q
g#1
replaced by

2", (i)<aiz, z>s<'<> exp|- 2Kt - ty)]
S

which applies to a particular Ak, and where ng (i) is the number of terms in Z

q
g*1l
which are assigned to the group s for the component i. The parentheses around i

indicate that there is no summation on that subscript. A similar regrouping can be

carried out for the terms in Z However, that summation turns out to be zero, if we

q,r
g#l

assume that the random a, - are uncorrelated, since (a. — a. - will be zero for
1, K 1,K,q1,K,I'S

q # r. Then the average value of Ai a in the increment Ax becomes (see eq. (23))
2

<A12’E (k) = <a12 7 1)) exp[- 20t - ty)] +Z _;i% (a7 E>S(K) exo[- 20500t - t)]
)
S

(24)

where n, is the number of terms in E that lie in Ak. The expression for ui2

a
g#1
(eq. (22)) then becomes

u_i2 = K <aiz’ 7, 1> (x) exp[— 2w<2(t - tIZI +Z E—i A <aiz, E>S(/<) exp [— 2bs(;<)(t - tl)]
)

(25)
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To obtain an expression for the energy spectrum function E, we note that (ref. 1)

1— /°°
= uwu, = E dk (26)
2 't o

where uu; = u% + ug + ug. Equations (25) and (26) then give

)
E dk = E 1 <1’K’11’K’~1exp[—chz(t-tlﬂ
2 Ak
0 K

%)

a. =
E <1,/< s
nK Ak

i

expE2bs(t - tlﬂ Ak @7)

where there is now a summation on i. If Ak is very small, we can write, to a very

good approximation,

E(k) = BZ(K) exp[— ZUKZ(t - tli, + Z Bg(l{) exp [— 2bs(l<)(t - tl)] (28)

S

Equation (28) gives the evolution in time of the energy spectrum function from an initial
state which is specified by the B's and b's in the equation.

As shown in the last section, if the turbulence is specified at an initial instant, the
time derivatives of E can be calculated at that instant by using the Fourier transformed
correlation equations. Thus, it is desirable to write the B's and b's in equation (28)
in terms of E and its derivatives at the initial time. That can be done by evaluating
equation (28) and its time derivatives at t =t; and solving the resulting system of equa-
tions for the B's and b's.

In what follows, we will first retain only two terms of equation (28). Equation (28)
can then be written conveniently as

E-E {C(K) exp [ 2ui(t - tl)] + (1 C) exp- 2Bkt - tlﬂ} (29)

12



where 0 = C = 1.

For C =1 equation (29) reduces to the well-known expression for the final period
of decay (ref. 1). For the general case (C # 1) we could determine C and b in terms

of the first and second derivatives of equation (29) for t = t; and then evaluate those

derivatives by using the two-point spectral equations (see egs. (10) to (12)). The follow-
ing procedure turns out to be simpler, however. By substituting equation (29) into the

spectral equation (10) we get for the energy transfer term

T =2(1 - C)(wc2 - b)Et=t1 expl} 2b(t - tlﬂ = Tt:tl expl:- 2b(t - tlil

Then

ST . g, exp[—Zb(t - tl)] , (ﬂ) expEZb(t - tl)]
at =4 at/,_,
=4

Comparing the last two members of equation (31) and using equation (11) gives

A2
t=t
b= vxz - 1
2T,
t—tl
From equations (30) and (32) we have
2
Ti=t,
C=1-—- —
V., , E
t_t1 t—’c1

Equations (29) and (30) then become

Vi_
2T

E = Et=t1 C exp[:— 2w<2(t - tlzj +(1-C)exp|-2 VK2 - t - tl)

t=t1

(30)

(31)

(32)

(33)

(34)
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and

Vit
2 -1
T=T exp|- 2 {vk“ - (t-ty) (35)
t=t 1
1 2T,
1
From equation (11)
Vit
V=V exp|- 2 {vk“ - (t-tq) (36)
t=t 1
1 2T
t:tl

where C is given by equation (33).

Equations (34) and (35) were obtained by retaining two terms on the right side of
equation (28). We consider next a higher order approximation in which three terms are
retained in that equation. If equation (28), with three terms retained, is substituted into

equation (10), we get for T

2/ 2 2( 2
T = 2131(K g bl) exp[— 2 (t - tl)] + 2B2<K - b2) exp [- 2by(t - tl)] (37)
Equation (37) contains four unknown functions which are to be determined by the initial
conditions. For that purpose we use equation (37) and its first three derivatives evalu-

atedat t = tl. Thus, we obtain

5 1/2
TiTo- Ty T ||T1To - Tyt T3 T2 - T.T
1 1 9- T1T3 5
L2 B a2 | )
4<T1 . Tt:tsz) 4("1"1 - Tt:tsz) 4<T1 - T, 1T2>
. 1/2
T,Tq-T,, T T,T.-T, , T 2

2 =
2 2
4(T1 - Tt:t1T2> 4(T1 - Tt:tsz) 4(T1 - Tt:tsz)
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2 ZbZT2 + T3

1 %("2 - b1>(bz - by)

B

= (40)
16b

and

B

5 2b,T, + Tq (1)
2—16b2<2—b>(b b))
A 2/\P1 " Pa

where Tl’ Tz, and T3 are the first, second, and third time derivatives of T at
t =t;. The first derivative T; can be written in terms of the functional Vi_ , which
1

gives a representation of three-point spectral quantities (eq. (11)). Equations for higher
order functionals can be obtained by the procedure used for obtaining equation (11) for
V. Thus, by using the four-point spectral equations of reference 6 (egs. (11) and (12))
we get

9V 2V 4R (42)

ot
where R is a functional of three- and four-point spectral quantities. Similarly,

R _ 2VK2R+S (43)

ot

where S is a functional of three-, four-, and five-point spectral quantities. By using
equations (11), (42), and (43), the first, second, and third time derivatives of T at

t = t1 in equations (38) to (41) can be written in terms of higher order spectral quanti-
ties as

T, = - 2uK°T

1 t=t, Vt:tl (44)

1

2
(o2 2
T, = (20?) Ty - vV R (45)

and

3

T —-(2 Z)T +3(2 2)2V - BUK’R s (46)
3~ VK t=t; VK t=t, VK t=t1+ t=t,
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RESULTS AND DISCUSSION

A comparison between the experimental data of Uberoi (ref. 13) and the present
theory (eqs. (34) to (36)) is given in figures 1 to 4. (Another pertinent experimental in-
vestigation is that of C. W. Van Atta of the University of California at San Diego. He
recently measured directly the individual terms in the two-point spectral equation; how-
ever, his data are for only one time.) The comparison in figures 1 to 4 is made for an
initial time corresponding to X/M = 48 in the experiment (t’{ = (v/Mz)t = 0.001818, X
is the distance downstream from the grid, and M is the mesh size of the grid). For the
initial specification of the turbulence values of E and T were obtained from figures 5,
9, and 10 of reference 13. Initial values of V were not given directly in reference 13
but were estimated from the decay data for T and equation (11). Except for experi-
mental error those values will be the same as those that might have been measured
directly.

The agreement between the predicted and experimental energy spectra for the same
initial conditions (fig. 1) appears to be quite good, considering the difficulty of the meas-
urements. The calculation of the experimental values of E required the differentiation
of measured one-dimensional spectra and an assumption of isotropy.

Predicted and experimental values for the decay of u_lﬁ_l are plotted in figure 2.

The agreement between theory and experiment is excellent for values of t* up to about
0.006. (Note that spectra were measured only for values of t* between 0.00182 and
0.00417.) Elimination of the moderate deviation for t* > 0.006 might require a higher

6x10”

Theory (three terms
t = (wimdt in eq. (28))

— — —— Experiment (ref. 14)
1. 818x1073

! 3
2L\ 2 727110
. ‘ L]

ax10?

- (M2E

£*

2H\ 4. 167x1073

0 10 20 30 0 50

Figure 1. - Comparison of theory with experiment of refer-
ence 13 for decay of turbulent energy spectra.
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4.000° Theory (egs. (33) and (34)}

O Experiment (Uberoi, ref. 13)
— —— Weak turbulence approximation
———— Taylor series (eq. {13)}

Y

I | I ]

0 2 4 6 8 10x1073
t = (wimdit

Figure 2. - Comparison of theory with experiment of refer -
ence 13 for decay of average component of velocity variance.

order theory (more terms in eq. (28)), together with additional initial statistical infor-
mation. Alternatively, the deviation might be due to the amplification at large times of
slight inaccuracies in the measured initial spectra. The theoretical values for t* less
than 0. 00182 were calculated by working backwards from the measured initial spectra.
Also included in figure 2 is a Taylor series solution which uses the same initial informa-
tion as the exponential series and the curve for the weak turbulence approximation. It
might be pointed out that the curve for the weak turbulence approximation is not the -5/2
power decay law usually given for the final period (ref. 1) but is the curve obtained by
using the measured initial energy spectrum and equation (29) with C = 1.

Spectra for the energy transfer term T are plotted in figure 3. The experimental

and theoretical curves are in good agreement except near the value of « where Tt—t
1
changes sign. The deviation there results from a mathematical singularity in equa-

tion (35) when T;_; =0. However, that deviation does not seem to be serious, because
|

the real physical curve in that region can easily be estimated graphically or by using an
interpolation formula. This is particularly true since it is known that the total area en-
closed by the T spectrum should be zero (ref. 1). It appears likely that the difficulty
could be eliminated if another term were retained in equation (28). (More will be said
about that possibility in the next paragraph.) The deviation also carries over to some
extent into the results for E and u.,u,. However, if one does not use values of « close

il
to the point where Tt~t changes sign for calculating E and U, the inaccuracies in
1

those quantities will be small. It appears that the overall agreement between theory and
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Figure 4. - Comparison of theory with experiment of refer-
ence 3 for decay of higher order spectral quantity V
(eq. (11).



experiment obtained by using equations (33) to (35) should be considered encouraging.
For the sake of completeness, spectra of the functional V (egs. (11) and (36)), the
third initial condition specified for the turbulence, are plotted in figure 4. The agree-
ment between theory and experiment is probably within the uncertainty in estimating V
from the decay data in reference 13, except in the vicinity of the point where Tt:tl

changes sign. Thus, the theory predicts the evolution in time of E, T, and V, when
those quantities are specified at an initial time.

We have not been able to apply a higher order theory to Uberoi's data, that is, to
evaluate three instead of two terms in equation (28) by using the initial data given in his
article. However, we can apply a higher order theory to an analysis in reference 5,
since for that analysis we can, in effect, calculate as much initial information as is de-
sired. That analysis neglects quadruple correlation terms in the three-point correlation
equations and should apply, for a particular set of initial conditions, at times somewhat
before the final period of decay. The initial conditions, as well as values at later times,
are given by closed-form equations in that analysis and thus are better defined than may
be possible in an experiment. For the present purposes, the analytical results from
reference 5 might in fact be thought of as experimental results in which the initial condi-
tions are specified exactly. This is true because the analysis of reference 5 is exact for
the model chosen, and the initial conditions used in both that analysis and the present
theory correspond to that model.

The case considered here corresponds to figure 6 of reference 5. Values of dimen-
sionless E, T, and time derivatives of T for the initial specification of the turbulence
(t’{ = 0.002) are obtained from equations (40) and (39) in reference 5. We can eliminate
the time derivatives of T by introducing V (eq. (11)) and the higher order functionals
R and S (egs. (42) and (43)). In the present case, those quantities will all be represen-
tations of correlations of order no higher than the third, since terms involving correla-
tions of higher order than the third are assumed negligible in the analysis of reference 5.

Figure 5 gives a comparison between results for T calculated from the present anal-
ysis and those from reference 5. The quantity JO is a constant related to conditions at
tg = -0.00633 in the equations of reference 5. The starred quantities in figures 5 to 7
are the same as those in figures 1 to 4 if we let J0 = M3v2. As expected, when T is
calculated from equation (35), the agreement with reference 5 is good except in the region
where thtl changes sign. However, when a higher order theory is used by retaining

three terms in the expression for E (two terms in the expression for T eq. (37)) the
agreement is excellent at essentially all values of k. It might be expected that a similar
improvement would be obtained in figures 3 and 4 if a higher order theory could be used
for comparison with the experimental data of Uberoi.

Because of the good agreement obtained for T in figure 5, one would expect the
calculated energy spectra E to also be in good agreement with those from reference 5.
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Figure 7. - Comparison of present (higher
order) theory with that of reference 5 for
decay of higher order spectral quantity V
(eq. (1.

Figure 6 shows that that is indeed the case. The energy spectrum, in this case, decays
in a highly nonsimilar fashion. In order to show the effects of energy transfer between
wave numbers, curves for the final period of decay (first term of eq. (40) of ref. 5) are
also included in figure 6.

Figures 7 to 9 show plots for the decay of the higher order spectral quantities V,

R, and S. The agreement between the present higher order theory and the results of
reference 5 is very good. Although the effects of the singularity at « = 15.33 are
greater for these higher order quantities than for the lower order ones, they are still
not apparent unless points close to the singularity are used in plotting the curves. For
points close to the singularity, an interpolation formula can be used. Thus, by specify-
ing the initial conditions for E, T, V, R, and S, we can predict the evolution in time

of those quantities by using the present higher order theory. That is, the required num-
ber of initial conditions is no greater than the number of quantities whose decay we can
predict.

The higher order theory (three exponential terms retained in eq. (28)) can also be
compared with some recent grid-turbulence data obtained in a water channel by Ling and
Huang (ref. 14). For that comparison, the experimental input can be conveniently ob-
tained from an empirical equation for E (eq. (22)) in their article. The higher order
spectra were not measured directly in their experiment but could be calculated from
their equation for E by using equations (10), (11), (42), and (43). Except for possible
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Figure 10. - Comparison of theory with experiment of
reference 14 for decay of turbulent energy.

experimental error those values will be the same as those that might have been meas-
ured directly. The comparison is shown in dimensionless form in figures 10 to 15.
The quantity A is a constant with the dimensions of a length squared and is related to
conditions at a time ty (ref. 14). As in the preceding comparisons, unphysical singu-
larities occurred in the theoretical spectra at certain values of k, particularly in the
higher order spectra. Thus, in the vicinity of those points, four-point interpolation
formulas were used.

Figure 10 compares theory and experiment for the decay of turbulent energy when
the initial state is specified at (1//A)t1 = 0. 0075. Theoretical curves are shown for 1,
2, and 3 exponential terms retained in equation (28). The curve for three terms is in
good agreement with the experiment for the whole decay period. The curve for two
terms is in almost as good agreement. That is not the case for the spectra, where only
the curves for three terms agree closely (see the curves for E in fig. 11). Compari-
son of the curve in figure 10 for one term retained (weak turbulence approximation) with
the experimental curve shows the effect of inertia on the decay process. As in figure 2,
the curve for the weak turbulence approximation in figure 10 is not the -5/2-power decay
law usually given for the final period, since measured initial energy spectra were used
in this report.

Figures 11 to 15 give a comparison of theory and experiment for the decay of the
spectra used to specify the initial state of the turbulence at t;. The curves indicate

23



¥e -

2
12x10
. (VIAR
0. 0075 ————— Theory (three terms
in eq. (28))
————— Experiment (ref. 14)
——-——Theory (two terms in

10—

6 eq. (28))
4
2
0 ]
8—
1 |
6_.
270150
2
| | ]
L | J
25 30 35

Figure 11. - Comparison of theory with experiment of reference 14 for decay of
three-dimensional turbulent-energy spectra,

6x10% (VIA

0.0075

Theory (three terms in
eq. (28)
—————Experiment (ref. 14)

0 10 20 30 40 50 60

Ali2,

Figure 12. - Comparison of theory with experiment of reference 14
for decay of energy-transfer spectra.



114

3.0

2.5
2.0
L5

L0

(VIAN
0.0075

107

Theory {three terms
in eq. (28)
————— Experiment (ref. 14)

— . 0109

| I A L |
10 0 30 40 50 60 70
Ali2,

Figure 13. - Comparison of theory with experiment of reference 14 for decay of
higher order spectral quantity V (eq. (11)).

(wiA
0.0075

in eq. (28))
— — ——Experiment (ref. 14

Theory (three terms

)

.0109

=i 10 2 30 1 50 60

Ali2,

Figure 14. - Comparison of theory with experiment of reference 14 for decay of
higher order spectral quantity R (eq. {42)).

70



Theory (three terms
in eq. (28))
————— Experiment (ref. 14)
(vIAf

0.0075

Al

>

Iy
1.—
0 |
2,—
1__
0 10 20 30 40 50 60 70

Ali2,

Figure 15. - Comparison of theory with experiment of reference 14 for decay of
higher order spectral quantity S (eq. (43)).

good agreement with the higher order theory. That is, the theory is able to predict the
decay of all of the spectra used to specify the initial turbulence, when three exponential

terms are retained in equation (28),

CONCLUDING REMARKS

If a homogeneous turbulent field is specified at an initial instant by its multipoint-
velocity correlations (or their spectral equivalents), the initial time derivatives of those
quantities can be calculated from the correlation or spectral equations. The develop-
ment of the turbulence in time can then be obtained by using those derivatives in a series
such as a Taylor power series. When the problem is formulated in this way, an
assumption for closing the system of correlation equations is not required, since those
equations are closed by the initially specified correlations or spectral quantities. A
Taylor series expansion, however, did not give realistic results (except for small
times) when the limited initial experimental data were used. An exponential series
(eq. (28)) which was an iterative solution of the Navier-Stokes equations worked much

better.
In general, when the energy and transfer spectra and a quantity related to three-
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point spectra were specified at an initial time, the predicted changes with time of those
spectra, as well as the turbulent energy, were in good agreement with the experimental
wind-tunnel data of Uberoi. Since the prediction of the changes of those spectra with
time is evidently an essential part of the homogeneous turbulence problem, the results
are encouraging.

A higher order theory was given in which the three-point spectral quantities, as
well as two additional higher order spectral quantities, were specified initially. The
predicted decay of all of those quantities agreed very well with the water-channel data
of Ling and Huang, as well as with the results for a previous analytical model. For the
present purposes the results for the previous model might be thought of as experimental
results in which the initial conditions are specified exactly. Thus, when the results
from the present theory are compared with either experimental results or the results
of an "'analytical experiment, '' the agreement is good. The evolutions of the various
spectra are interdependent on the initial specifications of those spectra.

By specifying n spectra at an initial time, where n is an odd integer greater than
or equal to 3, we have been able to predict the evolution in time of those n spectra.
We have not been able to obtain determinate results for n < 3, except for weak turbu-
lence. But when one considers the fact that an infinite number of spectra (or correla-
tions) would be required for a complete initial specification, there seems to be no ob-
vious reason why we should be able to do so. In fact, if we were to claim that we should
be able to predict the decay of the energy spectrum by specifying at an initial instant
only that spectrum, we would in effect be saying that the Fourier components of the
energy spectrum decay independently, as in the final period. If we want to include the
effect of the interaction of those components, we will have to specify the initial energy
transfer spectrum. The Fourier components of the transfer spectrum, and of higher
order spectra, will also interact in this nonlinear problem, so it is not surprising that
we have to give the initial specifications of at least three spectra in order to predict the
decay of any of them.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, January 17, 1972,
136-13.
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